✅ ОРИЕНТАЦИЯ ПТИЦ ПО СОЛНЦУ. В истории науки нередки случаи, когда...
✅ ОРИЕНТАЦИЯ ПТИЦ ПО СОЛНЦУ
В истории науки нередки случаи, когда исследователь, стремясь к одному результату, получал другой, иногда гораздо более важный. Однако бывает и так, что ученый находит блестящее решение именно той задачи, которую ставил перед собой, и при этом обнаруживает, что причины исследуемого явления значительно глубже, чем он предполагал.Именно таким образом сделал свое открытие Крамер, после чего многие биологи в различных исследовательских центрах забросили свою текущую работу, чтобы присоединиться к тем, кто бился над разрешением загадки живых часов. Свои всемирно известные исследования по ориентации птиц в полете Густав Крамер начал в Гейдельбергском университете и продолжил в Институте биологии моря имени Макса Планка в Вильгельмсхафене, расположенном на западном побережье холодного Северного моря. Наблюдая за стремительными перелетами морских птиц к местам гнездовий, Крамер размышлял над вековой загадкой перелетов, над той изумительной точностью, с которой перелетные птицы находят путь к далекой цели. Он дивился геройству полярной крачки, этого необыкновенного летуна, что гнездится в полутора сотнях километров от Северного полюса, а с наступлением осени пролетает над Канадой, затем над безжизненными пространствами Атлантического океана к западным берегам Африки и, обогнув мыс Доброй Надежды, остается зимовать южнее Порт-Элизабета. Но полярная крачка не единственный пример совершенства в навигационном искусстве. Новозеландская бронзовая кукушка покрывает расстояние в две тысячи километров, летя через Тасманово море к Австралии, а оттуда еще полторы тысячи километров на север через Коралловое море к крошечным участкам своих зимовок на архипелаге Бисмарка и Соломоновых островах. Еще более удивительно, что молодая кукушка, совершая такой перелет впервые, может проделать его в одиночестве, опередив своих родителей по меньшей мере на месяц. Окольцованная белоголовая зонотрихия возвращается из года в год на один и тот же куст в саду профессора Л. Мейвальда в Сан-Жозе (штат Калифорния), пролетев три с половиной тысячи километров от мест своих гнездовий на Аляске. Загадка столь точно нацеленных перелетов очень давно интересовала биологов, и они объясняли это по-разному. И не удивительно: проблема была исключительно сложной, а возможностей научно разрабатывать ее тогда еще не было. Поэтому, когда Крамер доложил на международном конгрессе орнитологов о результатах своих экспериментов по изучению ориентации птиц, конгресс был изумлен и восхищен. Р. Петерсон сказал: «Сообщение Густава Крамера об экспериментах со скворцами, показавших, что един-ственный источник ориентации птиц — солнце, чрезвычайно захватывает и увлекает». Сфера исследования миграций животных очень обширна, и определение направления миграций, конечно, только один из ее аспектов. Но проникновение в один аспект часто приводит к прояснению всей проблемы в целом. Как мы видели, животные часто мигрируют к очень удаленным местам и там находят конечную, подчас ничтожно малую по размерам цель своего перелета. Такая точность была бы физически невозможной при отсутствии некоей системы управления, аналогичной системе управления самонаводящейся торпеды. При этом крайне важно понимать, что такая система управления не может функционировать без постоянного притока информации из окружающего мира. Самонаводящаяся торпеда должна получать сигналы, которые отражаются от цели, иначе она промахнется. Подобно этому, и животные должны получать сигналы из окружающей среды, иначе направляющий их механизм не сработает. Но какие сигналы? Информация, поступающая из окружающей среды, может восприниматься либо известными нам органами чувств птицы, либо пока неизвестными. При этом независимо от того, каким образом воспринимается эта информация, она должна быть такой, чтобы птица смогла решить три задачи. Во-первых, где она находится в данный момент и в каком направлении ей нужно следовать дальше. Во-вторых, как сохранить направление в полете и как изменить его в случае необходимости. В-третьих, как узнать место назначения, прилетев туда. Существует ли какое-то единое чувство, известное или неизвестное нам, благодаря которому птица могла бы получить ответ на все эти вопросы? Попробуем рассмотреть возможные виды информации. Каждый объект на поверхности Земли излучает тепло. Горячие предметы испускают излучение высокой интенсивности с малой длиной волны, а холодные — низкой интенсивности с большой длиной волны. Поэтому и частота и интенсивность на полюсах будут сильно отличаться от таковых у экватора. Можно было бы предположить, что дальние мигранты улавливают эту разницу. Но, как заметил Гриффин, это было бы слишком простым объяснением способности птиц к ориентации. Такому объяснению противоречат три факта. Излучение распространяется прямолинейно. Поэтому излучение от объекта, находящегося всего в полутораста километрах от птицы, попадает в точку, расположенную значительно выше уровня обычных полетов птиц. Кроме того, тепловое излучение сильно искажается такими особенностями ландшафта, как леса, озера, пустыни, города, которые вносят в него помехи —так называемый «шум». И наконец, никто до сих пор убедительно не доказал, что птицы могут воспринимать изменения теплового излучения. Все это касается обычного теплового излучения. А как же быть с чем-то менее очевидным? С магнитным полем Земли, например. Его тоже называли в качестве возможного «компаса» для птиц. Эквипотенциальные линии напряженности магнитного поля Земли примерно совпадают с параллелями. Если птица ощущает разницу в напряженности магнитного поля, то она может определить географическую широту своего местонахождения. Или, скажем, магнитное наклонение. Если птица воспринимает его, стрелка ее «компаса» будет находиться в горизонтальном положении над экватором и почти вертикальном — у полюсов. Изменение положения этой стрелки скажет птице о том, где она находится. Но и тут возникают препятствия. Опыты показали, что птицы не реагируют на магнитное поле, даже значительно более сильное, чем магнитное поле Земли. Кроме того, экспериментаторам ни разу не удалось научить птиц реагировать на магнитные поля. Какие же другие особенности окружающей птицу среды могут давать ей информацию о ее местоположении? Очевидно, вращение Земли. Угловая скорость ее вращения такова, что точка на поверхности Земли, расположенная недалеко от экватора, движется со скоростью около 1 600 км/час. Если птица летит на восток со скоростью 100 км/час, ее истинная скорость (относительно солнца) будет около 1 700 км/час, а если она летит на запад, то около 1 500 км/час. Если птица воспринимает эту разницу, то она может, по-видимому, определить направление полета и географическую широту своего местоположения. А если птица не летит? Известен случай, когда гуси с подрезанными крыльями прошли несколько километров в направлении своих обычных перелетов. Кроме того, было убедительно показано, что содержащиеся в клетках птицы прекрасно определяют направление. Итак, мы получили некоторое представление о сложности проблемы, с которой столкнулся Крамер. Давно известно, что в сезон перелетов птицы, содержащиеся в клетках, обнаруживают так называемое «перелетное беспокойство»: они перепархивают с места на место, но сохраняют при этом определенное направление. Не это ли направление они избрали бы для полета, если бы были на свободе? На этот вопрос и решил ответить Крамер. Объектом для своих наблюдений он выбрал европейского скворца, который превосходно переносит содержание в клетках, легко приручается и поддается обучению. И вскоре лаборатория в Вильгельмсхафене обзавелась молодыми желторотыми птицами, а Крамер нетерпеливо ждал конца лета, когда начинаются осенние перелеты. Еще до наступления прохладных октябрьских дней он установил непрерывное наблюдение за своими скворцами в светлое время суток (поскольку пролет скворцов идет днем). Из Вильгельмсхафена скворцы осенью обычно направляются на юго-запад. Предпочтут ли находящиеся в клетках скворцы именно это направление? Ждать Крамеру пришлось недолго: в октябре его птицы нервно бились в юго-западных углах своих клеток. Какими ориентирами воспользовались птицы? Может быть, каким-нибудь чисто физическим признаком местности вроде дерева или холма? Крамер ставил клетки в различные места, прикрывал нижнюю часть клеток, чтобы скворец мог видеть только небо, но птицы по-прежнему столь же упорно стремились на юго-запад. Следующей весной, когда направление перелетов скворцов изменилось на северозападное, птицы в своих клетках отдавали предпочтение северо-западному направлению. Такова суть экспериментального метода, который столь долго искал Крамер. Теперь ему предстояло создать оборудование, чтобы проводить тысячи наблюдений и статистически обрабатывать их. Была построена круглая клетка с абсолютно симметричной внутренней поверхностью: находящаяся в ней птица не имела никаких ориентиров, по которым она могла бы определить направление. С жердочки, расположенной в центре клетки, птица в период перелетного беспокойства постоянно вспархивала, порываясь лететь все время в одном направлении. Прозрачный пластиковый пол позволял наблюдателю, лежащему под клеткой, следить за птицей. Чтобы обеспечить точную регистрацию положения птицы в любой момент, пластик был размечен на ряд секторов. Самой важной переменой в опытах Крамера было направление света, попадавшего в клетку. Поэтому он поместил экспериментальную круглую клетку в шестигранный павильон, каждая из сторон которого имела окно со ставнями. К внутренней стороне ставней прикреплялось зеркало, изменявшее направление луча света, идущего в клетку. И, наконец, и клетку и экран вокруг павильона можно было вращать. Установка Крамера, при помощи которой он наблюдал за выбором птицей направления миграционного перелета (вверху). Когда скворец видел истинное положение солнца, он указывал нормальное северо-западное направление весенней миграции (внизу слева). При изменении солнечных лучей при помощи зеркал на 90° птица поворачивалась на те же 90° (внизу справа). Когда все было готово, Крамер расположился под прозрачным дном клетки с тетрадью и карандашом в руках и каждые десять секунд записывал, какой из размеченных секторов занимала птица. По утрам в течение по крайней мере часа Крамер отмечал положение птицы и очень скоро убедился, что ни оборудование, ни его собственное присутствие не беспокоят скворцов. Теперь исследователю уже не мешали неопределенности и неточности, неизбежные при наблюдениях в поле. Лабораторный опыт позволял экспериментатору менять контролируемые условия любым нужным ему образом. Как, например, будут вести себя птицы, если луч света, попавший в клетку, отразится зеркалом под прямым углом к его естественному направлению? Ведь в такой ситуации положение солнца должно казаться находящейся в клетке птице повернутым на 90°. И снова Крамер педантично записывал: «Первые 10 секунд птица в секторе № 8, вторые 10 секунд — в секторе № 9; третьи 10 секунд — в секторе № 7; четвертые 10 секунд — в секторе № 9; пятые 10 секунд — в секторе № 8...» и так далее, пока не сделал более 350 записей в течение всего лишь часа. Вскоре достоверность полученных результатов стала очевидной. Но примут ли их скептически настроенные ученые? Наверняка нет, поскольку из этих результатов следовал совершенно поразительный вывод. И Крамер снова принимается за свои утомительные наблюдения. Когда же он объявил о своих выводах, научный мир был действительно поражен. Более всего ученых удивил тот факт, что, когда направление солнечных лучей было изменено на 90°, скворцы порывались лететь в новом направлении, повернутом на те же 90°. Значит, для определения направления перелета птицам необходимо взять пеленг по солнцу! Крамер искал ответ на интересовавшие его вопросы, всячески изменяя условия своего эксперимента. Вращал непрозрачный экран вокруг павильона, так что птицы могли видеть лишь часть неба. Вращал клетку. Прикрывал павильон экранами, чтобы варьировать количество проникающего в него света, имитируя различную степень облачности. Но как бы он ни изменял условия, скворцы всегда выбирали правильное направление, если видели солнце непосредственно. Крамер, конечно, был знаком с ранней работой Белинг, показавшей, что пчел можно научить искать пищу в определенном направлении. А что, если попробовать таким же образом обучать птиц? Исследователь строит круглую дрессировочную клетку, которая так же, как и первая, выглядит изнутри абсолютно симметричной. Но снаружи вокруг клетки он равномерно разместил двенадцать совершенно одинаковых кормушек, прикрытых резиновыми мембранами с прорезями. Пока птица не просовывала клюв сквозь прорезь, она не знала, в какой из кормушек лежит зерно. Теперь Крамеру нужно было обучить птицу искать пищу в одной какой-нибудь стороне клетки. Он выбрал для этого восточную кормушку и в семь часов утра насыпал в нее зерно. Птица проявила большую настойчивость и после серии попыток обнаружила, что пища лежит только в восточной кормушке. Через 28 дней обучения (дрессировка проходила от 7 до 8 часов утра) скворец усвоил урок. Пришло время решительной проверки. Крамер перенес клетку на десять километров и в 17.45 насыпал зерно в восточную кормушку. Как теперь поведет себя птица? Во время утренних дрессировок солнце находилось чуть-чуть правее восточной кормушки. Теперь же, к концу дня, оно было позади западной. Будет ли птица и сейчас искать пищу в восточной кормушке или повернет за ней в направлении солнца? Крамер напряженно ждал. Скворец немного пометался по клетке, видимо, в нерешительности, а затем, ошибившись всего один раз, повернулся к восточной кормушке. Итак, птица каким-то образом знала, что для того, чтобы найти восток утра, надо двигаться по направлению к солнцу, а в конце дня — так, чтобы солнце оставалось непосредственно сзади! Установка Крамера для изучения выбора скворцом направления при фиксированном положении «солнца» (верх). Сначала скворца обучали искать пищу при открытом небе (А) в кормушке, находящейся в западном секторе клетки. Затем загораживали клетку защитным экраном от настоящего солнца и включали фиксированное «солнце». И птица, принимая искусственное «солнце» за настоящее, искала пищу в восточной кормушке утром (Б), в северной — в полдень (В) и в западной — в конце дня (Г). Чтобы еще более утвердиться в своих выводах, Крамер придумал исключительно изящный эксперимент. Прежде всего он обучал скворца находить пищу независимо от времени дня в западной кормушке. Затем он закрыл клетку защитной ширмой от настоящего солнца и осветил ее искусственным солнцем, но так, что свет падал все время с одной и той же стороны — с запада. Что будет делать бедная птица при таком «солнце», которое непрерывно светит с одной и той же стороны? К удивлению сгоравшего от нетерпения Крамера, скворец отнесся к этому светилу как к настоящему, то есть повел себя так, словно «солнце» перемещалось, как ему и положено, по небосводу. Поскольку он был обучен искать пищу в любое время дня в западной кормушке, он искал ее в восточной кормушке в 6 часов утра, в северной — в полдень и в западной — в 17 часов. Можно ли было теперь сомневаться в том, что птица с темными переливающимися перьями могла определять время дня с точностью до минуты. Вот о таких удивительных открытиях сообщил Крамер научному миру в начале 50-х годов. И хотя эти открытия очень быстро принесли ему мировую известность, сам он смотрел на свои достижения глазами непредубежденного человека. Предстояло сделать еще очень много, чтобы выяснить, как же именно ориентируются птицы. Поскольку он показал, что птица определяет направление, ориентируясь по солнцу и учитывая его суточное перемещение, можно было считать, что она обладает солнечным компасом, которым пользуется точно так же, как штурман магнитным компасом для прокладывания курса. Но это было лишь частичным решением проблемы. Ведь человек для определения направления должен иметь еще и карту, а также знать свое местоположение на этой карте. Значит, для того, чтобы достигнуть конечной цели перелета, птице тоже необходимо располагать какой-то картой. Но о такой карте пока никто не знал. И Крамер обращается к литературе. Один из английских исследователей, Джеффри Мэтьюз, долгое время изучал поведение почтовых голубей... Мэтьюз выпускал почтовых